114 research outputs found

    Design and fabrication of a large vertical travel silicon inchworm microactuator for the Advanced Segmented Silicon Space

    Get PDF
    Future concepts for ultra-large lightweight space telescopes include the telescopes with segmented silicon mirrors. This paper describes a proof-of-concept inchworm actuator designed to provide nanometer resolution, high stiffness, large output force, long travel range, and compactness for ultraprecision positioning applications in space. A vertically actuating inchworm microactuator is proposed to achieve large actuation travel by incorporating compliant beam structures within a silicon wafer. An inchworm actuator unit consists of a piezoelectric stack actuator, a driver, a pair of holders, a slider, and a pair of polymer beams connected to a centrally clamped flexure beam. Deep reactive ion etch experiments have been performed for constructing the actuator

    Anisoplanicity studies within NGC6871

    Get PDF
    Images corrected with adaptive optics benefit from an increase in the amount of flux contained within the diffraction-limited core. The degree of this correction is measured by the Strehl ratio, equal to the ratio of the maximum observed intensity to the maximum theoretical intensity. Natural guide star adaptive optics systems are limited by the need for a guide star of adequate magnitude within suitable proximity to the science target. Thus, the above-described benefit can only be obtained for objects over a fraction of the total sky. Two nights of imaging the central region of the open star cluster NGC6871 with the Palomar Adaptive Optics System has supplied measurements of the Strehl ratio for numerous stars within the field. These measurements were used to calculate K band isoplanatic angles of 39 arcseconds (UT 1999 May 31) and 50 arcseconds (UT 1999 August 1). These isoplanatic angles are compared to those derived from Kolmogorov atmospheric theory, and their implications for adaptive optics systems are discussed

    Prime focus spectrograph: Subaru's future

    Get PDF
    The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project has been endorsed by Japanese community as one of the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea, Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution. Taking advantage of Subaru’s wide field of view, which is further extended with the recently completed Wide Field Corrector, PFS will enable us to carry out multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A microlens is attached at each fiber entrance for F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. Fibers are accurately placed onto target positions by positioners, each of which consists of two stages of piezo-electric rotary motors, through iterations by using back-illuminated fiber position measurements with a widefield metrology camera. Fibers then carry light to a set of four identical fast-Schmidt spectrographs with three color arms each: the wavelength ranges from 0.38 μm to 1.3 μm will be simultaneously observed with an average resolving power of 3000. Before and during the era of extremely large telescopes, PFS will provide the unique capability of obtaining spectra of 2400 cosmological/astrophysical targets simultaneously with an 8-10 meter class telescope. The PFS collaboration, led by IPMU, consists of USP/LNA in Brazil, Caltech/JPL, Princeton, and JHU in USA, LAM in France, ASIAA in Taiwan, and NAOJ/Subaru

    Optical design for the narrow field infrared adaptive optics system (NFIRAOS) petite on the thirty meter telescope

    Get PDF
    We describe an exploratory optical design for the Narrow Field InfraRed Adaptive Optics (AO) System (NFIRAOS) Petite, a proposed adaptive optics system for the Thirty Meter Telescope Project. NFIRAOS will feed infrared spectrograph and wide-field imaging instruments with a diffraction limited beam. The adaptive optics system will require multi-guidestar tomographic wavefront sensing (WFS) and multi-conjugate AO correction. The NFIRAOS Petite design specifications include two small 60 mm diameter deformable mirrors (DM's) used in a woofer/tweeter or multiconjugate arrangement. At least one DM would be a micro-electromechanical system (MEMS) DM. The AO system would correct a 10 to 30 arcsec diameter science field as well as laser guide stars (LGS's) located within a 60 arcsec diameter field and low-order or tip/tilt natural guide stars (NGS's) within a 60 arcsec diameter field. The WFS's are located downstream of the DM's so that they can be operated in true closed-loop, which is not necessarily a given in extremely large telescope adaptive optics design. The WFS's include adjustable corrector elements which correct the static aberrations of the AO relay due to field position and LGS distance height

    Prime Focus Spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph

    Get PDF
    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38  μm to 1.26  μm, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71  μm to 0.89  μm will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase

    Sparse-matrix wavefront reconstruction: simulations and experiments

    Get PDF
    Adaptive optics systems with Shack-Hartmann wavefront sensors require reconstruction of the atmospheric phase error from subaperture slope measurements, with every sensor in the array being used in the computation of each actuator command. This fully populated reconstruction matrix can result in a significant computational burden for adaptive optics systems with large numbers of actuators. A method for generating sparse wavefront reconstruction matrices for adaptive optics is proposed. The method exploits the relevance of nearby subaperture slope measurements for control of an individual actuator, and relies upon the limited extent of the influence function for a zonal deformable mirror. Relying only on nearby sensor information can significantly reduce the calculation time for wavefront reconstruction. In addition, a hierarchic controller is proposed to recover some of the global wavefront information. The performance of these sparse wavefront reconstruction matrices was evaluated in simulation, and tested on the Palomar Adaptive Optics System. This paper presents some initial results from the simulations and experiments

    Design and fabrication of a large vertical travel silicon inchworm microactuator for the Advanced Segmented Silicon Space

    Get PDF
    Future concepts for ultra-large lightweight space telescopes include the telescopes with segmented silicon mirrors. This paper describes a proof-of-concept inchworm actuator designed to provide nanometer resolution, high stiffness, large output force, long travel range, and compactness for ultraprecision positioning applications in space. A vertically actuating inchworm microactuator is proposed to achieve large actuation travel by incorporating compliant beam structures within a silicon wafer. An inchworm actuator unit consists of a piezoelectric stack actuator, a driver, a pair of holders, a slider, and a pair of polymer beams connected to a centrally clamped flexure beam. Deep reactive ion etch experiments have been performed for constructing the actuator

    Optical characterization of the PALM-3000 3388-actuator deformable mirror

    Get PDF
    We describe the lab characterization of the new 3,388-actuator deformable mirror (DM3388) produced by Xinetics, Inc. for the PALM-3000 adaptive optics (AO) system1 under development by Jet Propulsion Laboratory and Caltech Optical Observatories. This square grid 66-by-66 actuator mirror has the largest number of actuators of any deformable mirror currently available and will enable high-contrast imaging for direct exoplanet imaging science at the Palomar 200" diameter Hale Telescope. We present optical measurements of the powered and unpowered mirror surface, influence functions, linearity of the actuators, and creep of the actuators. We also quantify the effect of changes in humidity

    Prime Focus Spectrograph (PFS) for the Subaru telescope: ongoing integration and future plans

    Get PDF
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~ 1.6-2.7Ã…. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project recently started undertaking the commissioning process of a subsystem at the Subaru Telescope side, with the integration and test processes of the other subsystems ongoing in parallel. We are aiming to start engineering night-sky operations in 2019, and observations for scientific use in 2021. This article gives an overview of the instrument, current project status and future paths forward

    Adaptive optics imaging of a stellar occultation by Titan

    Get PDF
    We present resolved images of the occultation of a binary star by Titan, recorded with the Palomar Observatory adaptive optics system on 20 December 2001 UT. These constitute the first resolved observations of a stellar occultation by a small body, and demonstrate several unique capabilities of diffraction-limited imaging systems for the study of planetary atmospheres. Two refracted stellar images are visible on Titan's limb throughout both events, displaying scintillations due to local density variations. Precise relative astrometry of the refracted stellar images with respect to the unnocculted component of the binary allows us to directly measure their altitude in Titan's atmosphere. Their changing positions also lead to simple demonstration of the finite oblateness of surfaces of constant pressure in Titan's mid-latitude stratosphere, consistent with the only previous measurement of Titan's zonal wind field
    • …
    corecore